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Abstract- [Ca2+] in a muscle cell is controlled by the 
sarcoplasmic reticulum (SR) that releases Ca2+ through the 
channels, takes up Ca2+ by the pumps on the SR membrane, and 
stores up Ca2+ with Ca2+ binding protein called calsequestrin 
(CS). 

This report proposed a model that represents [Ca2+] in a 
muscle cell controlled by the SR using a state transition 
probability model in which one state means that protein in the  
SR is binding ligands, and the other is releasing them. The 
proposed model consists of 4 modules: calsequestrin, voltage 
dependent Ca2+ release channels, Ca2+ induced Ca2+ release 
channels, and Ca2+ pumps. 

Estimating the amount of Ca2+ both released and pumped up 
with the model, it was indicated that [Ca2+] rapidly increases 
from the static state as soon as nerve impulses arrive at a muscle. 
We further reveal that the fact that Ca2+ pumps are located 
apart from Ca2+ release channels has an important influence on 
generating a Ca2+ spike signal. 
Keywords – E-C coupling, Ca2+ release channel, Ca2+ pump, 
calsequestrin, sarcoplasmic reticulum 

I. INTRODUCTION 

A nerve impulse arriving at a muscle, Ca2+ concentration 
([Ca2+]) goes up in the muscle cell, which causes actin 
filaments to slide on myosin filaments; thus muscle force is 
developed. The amount of developed force depends greatly on 
[Ca2+] in the cytosolution, which is controlled by Ca2+ release 
channels and Ca2+ pumps on the sarcoplasmic reticulum 
[1][2]. 

The cytosolic [Ca2+] control is achieved mainly by 4 
processes. (1) One is a process of storing Ca2+ by 
calsequestrin (CS), because having a lot of Ca2+ binding sites, 
many Ca2+ are storable in the sarcoplasmic reticulum (SR). 
(2) The second process is that in which transverse tubule (TT) 
on the muscle fiber receives newly-arrived nerve impulses by 
its voltage sensors, and transmits the information to specific 
type of Ca2+ channels (V-channel) on the SR membrane, 
along with TT conformation change and increasing local 
[Ca2+]. (3) The third process is that in which the increasing 

local [Ca2+] induces Ca2+ release channels (C-channel) to 
open their gates. Then Ca2+ in the SR is released out of the SR 
in the cytosolution. (4) The last process is that in which Ca2+ 
pumps on the longitudinal SR membrane capture the released 
Ca2+ into the SR. Thus the cytosolic [Ca2+] decreases again 
and settles in a static state. 

Although several models of [Ca2+] control in muscle cell 
have been proposed up to now, most of these are described 
from chemical reaction equation point of view using binding 
constant k or KD [3][4]. Since some single molecular 
measurement techniques have been developed, which enables 
stochastic behaviors on single molecular level to be 
measurable, a new type of model constructed from a level of 
single molecular stochastic behaviors can be utilized for 
understanding micro phenomena such as temperature 
dependency. 

From this point of view we construct a Ca2+ control model 
using state transition probabilities, in which one state means 
that protein in the SR is associating with ligands, and the 
other state means disassociating. The proposed model consists 
of 4 modules corresponding to the 4 processes of [Ca2+] 
control. Using the model we calculate time course of 
cytosolic [Ca2+] that is obtained from both Ca2+ efflux amount 
through the SR membrane and afflux amount into the SR. 

II MODEL OF A LIGAND BINDING SITE ON A PROTEIN 

We first consider a simple case in which there exists only a 
ligand and a site on protein, and the site is associating or 
disassociating with the ligand stochastically. Let the duration 
times that the site is associating with the ligand and 
disassociating with it, be stochastic variables in accordance 
with exponential distributions with the expected value σ and 
τ, respectively. We will call τ the mean lifetime. In a case 
there exist more than one of ligands, the number of which 
depends on the concentration [L], whereas the site can not 
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associate with more than one ligand simultaneously. The 
probability λ transiting from a state in which the site 
disassociates with a ligand to the other state in which the site 
associates with a ligand during unit time ∆t, and the 
probability of µ transiting to the reverse direction are 
represented as follows: 

              
 
 
 
Diagram of such a state transition is illustrated in Fig.1. We 
here define the binding affinity as Aff = σ /τ. 

III. MODEL STRUCTURE 

Let us focus on a half sarcomere. We approximate the form 
as a cylinder with a height of 1.1 µm, a radius 0.5 µm and a 
volume of 0.86 µm3 [5]. The half sarcomere is divided into 4 
parts: CS, V-channels, C-channels and Ca2+ pumps as 
illustrated in Fig.2. The ratios of cytosol and SR to a half 
sarcomere in volume are supposed to be 0.77 [6] and 0.091[5], 
respectively. 

A. Calsequestrin 
A calsequestrin molecule has 31 Ca2+ binding sites [7], and 

the density of binding sites is 31mM in the SR [8]. The ratio 
of the number of calsequestrin binding Ca2+ to the total 
number of Ca2+ binding sites on calsequestrin for various 
[Ca2+] is measured by experiment [7]. Parameters σCS

-1 and 
τCS

-1 for calsequestrin included in our model are estimated by 
a nonlinear optimization method so that the ratio calculated 
by the model can correspond to the experimental data. The 
estimated parameters σCS

-1, τCS
-1 depend on the initial values, 

which are randomly set for the nonlinear optimization, 
whereas the binding affinity Aff =σCS / τCS of calsequestrin to 
Ca2+ calculated from the estimated σCS

-1 and τCS
-1 have almost 

equal values with no dependency to the initial values, which 

suggests the affinity is an essential parameter with no 
redundancy. Following simulations are done using estimated 
values σCS

-1 =0.828×10-2, τCS
-1 =0.239×10-3 per 10-2 msec.  

B. V-channel 
 Ca2+ channels are located on terminal cisternae (TC), which 
is a part of SR membrane apposed to the TT. The radius of a  
Ca2+ channel is about 15nm [9]. Since the TC occupies 0.049 
of a sarcomere in volume, there are about 600 Ca2+ channels 
in a half sarcomere. Ca2+ channels can be classified into 2 
types as the functions: V-channel and C-channel. The 
V-channels and C-channels are located almost alternately [2].  

Depolarizing of TT is transmitted to V-channels on the SR 
along with some mechanical conformation changes. The 
detail of this mechanism has not been elucidated yet. When 
the signal arrives at the V-channel, the channel gate opens, 
and then Ca2+ flows from the SR to sytosol. The Ca2+ current 
through the channels depends on [Ca2+] at both cytosol and 
the inner SR. The membrane voltage potential Em is assumed 
to be described as a Nernst equation, and thus Ca2+ current 
Ichannel is postulated to compute as shown in Eq.(2). 
    

(2) 
 

in which, G, R, T, z, F, [Ca2+]cyt, and [Ca2+]SR are channel 
conductance, gas constant, absolute temperature, electric 
charge of ion, Faraday constant, [Ca2+] in cytosol and [Ca2+] 
of the inner SR, respectively. We assumed that channel 
conductance G is 313pS [11], and Ichannel through the 
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V-channel is calculated with a coefficient kI. 
We here introduce some hypotheses: the signal arrival time 

is a Gaussian stochastic variable, V-channel open immediately 
when signal arrives, and the open lifetime is a stochastic 
variable with exponential distribution. 

C. C-channel 
 Ca2+ through V-channel elevates cytosolic [Ca2+]. The open 
probability of C-channels depends on cytosolic [Ca2+]. It has 
been considered that a C-channel has two Ca2+ binding sites, 
one of which is an activate site (A-site) and the other is an 
inactivate site (I-site). A C-channel keeps opening while 
A-site is associating with Ca2+ and I-site is disassociating with 
Ca2+. The state transition diagram of a C-channel is expressed 
in Fig. 3.  
  The lifetime τA during A-site is associating with Ca2+ is 
estimated as 382 msec using Fig.5 appeared in [11]. The 
transition parameter σI

-1 in respect to I-site, is calculated as 
0.00459 per 10-2 msec using experimental data in Fig.3 
appeared in [11]. The other transition probabilities σA

-1 and 
τI

-1 are estimated, by calculating open state probability using 
experimental data [12]. So σA

-1 and τI
-1 are estimated as 

0.0905 and 0.0167 per 10-2 msec, respectively. 

D. Ca2+ pump 
There are a lot of Ca2+ pumps on the longitudinal SR 

membrane. Since the ratio of the longitudinal SR to a 
sarcomere is 0.06 in volume [5], there are 40,400 Ca2+ pumps 
in a half sarcomere. After a Ca2+ pump binds two Ca2+ in 
cytosol, these Ca2+ are transported to the inner SR side on the 

membrane, and then released immediately. When a Ca2+ 
pump binds only one Ca2+, the binding affinity of the other 
site becomes very high. For convenience sake in this model it 
is postulated that as soon as the first Ca2+ binding is caused 
the second site binds Ca2+ immediately, and released these 
Ca2+ are transported to inner SR side. Thus the state transition 
of a Ca2+ pump can be represented as in Fig.1. 
  Ca2+ transition parameters σpump

-1, τpump
-1 of a Ca2+ pump 

are estimated as 0.353 and 0.430×10-2 per 10-2 msec, 
respectively, using experimental data [13].  
  Because Ca2+ release channels are placed apart from the 
pumps, released Ca2+ arrives at the pumps with a time delay. 
In this model, the delay time is supposed to be 1.1 msec in 
maximum, considering Ca2+ diffusion constant 7×10-4 
mm2sec-1[14] 

IV. MODEL SIMULATION AND DISCUSSIONS 

It is assumed that a delay time from when an activated 
signal arrives to when V-channel open is a Gaussian 
stochastic variable with the mean 0.5 msec and the variance 
0.5 msec2. The lifetime of open V-channels distributes 
exponentially with the mean 0.5 msec. The number of open 
V-channels is shown in Fig.4. 
  The following simulations are executed with the time step 
10-2 msec.  The initial cytosolic [Ca2+] is set to be 10-7 M 
which is its static concentration.  
  Using the model the time course of cytosolic [Ca2+] is 
estimated as shown in Fig.5, which is considered as the shape 
of Ca2+ spike. However after 14 msec [Ca2+] has a tendency to 
slightly increase. The presence of proteins binding Ca2+ in the 
SR such as parvalbumin and troponin, are not considered in 
our model. Thus it is likely that the proteins depress cytosolic  
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Fig.6 The flux of released Ca2+ from V- and C-channels, 
and taken Ca2+ into SR 
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[Ca2+] lower than the estimated [Ca2+] in Fig.5.  
  The released Ca2+ flax from both V- and C-channels during 
10-2 msec is shown with a thick line in Fig.6. The thin line in 
Fig.6 represents the afflux of uptake Ca2+ by Ca2+ pumps. It 
can be seen that the C-channels release Ca2+ a few msec later 
than V-channels. Furthermore, Ca2+ pump uptake arises 
earlier than C-channels release Ca2+. It seems that the 
cytosolic [Ca2+] is controlled by the fine balance between the 
Ca2+ afflux by Ca2+ pumps and efflux from the channels. It is 
likely that keeping the fine balance and generating the Ca2+ 
spike is owing to the moderate distance between Ca2+ release 
channel and Ca2+ pumps. 
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